Lecture 15 - Nov. 3
Syntactic Analysis
Identifying Derivations: TDP vs. BUP

Top-Down Parsing: Algorithm
Left-Recursive CFG

Announcements
- Assignment 2 released

- Project Milestone 1 next week
+ Source project due at 11:59 PM on Tuesday
+ A simple readme.txt file explains how fo run your tool: e.g.,
java -jar compiler.jar prog.txt test.txt
(and where to find the output HTML file)
+ Example files you supplied are supposed to work automatically
+ Jackie will share his screen to build, run, and explore your code.

- Visitor Pattern source code: Type Casting

Project: Milestone 1

Milestone 1: Show 3 Example Runs [1% |

— On the week of November 7 (about 3 weeks after the project is released), your team is required to meet
with Jackie and demonstrate:

e 3 example runs of your compiler. Each example run consists of the input files and the automatically
generated output files.

e Your example input files should cover (some of the) basic programming features (written in sytax of
your own design):

¢ class/module declarations
variable declarations
variable assignments

variable references (i.e., referring to declared variables in expressions)

o 0O O 0

arithmetic, relational, and logical expressions
¢ conditionals
e The corresponding produced outputs should cover at least one control-flow coverage criterion and at
least one data-flow coverage criterion.

— In this meeting, Jackie may suggest specific tasks that your team should complete and will
be included in the evaluation of Milestone 2.

Discovering Derivations
Input Grammar G AST: (a + a) * a

- Expr + Term
| Term

- Term « Factor
|

|

Factor
(Expr)

a

Factor

(Expr)

/7 1X

Expr + Term
| I
Term Factor

Factor a

Discovering Derivations: Top-Down vs. Bottom-Up

Input Grammar G e L
Expr + Term TOP: (a+4a) " a %‘) ¢

-
| Term

— Term « Factor

| Term
9

|

Factor 1

(E X r) Term Factor
£ l I
a Factor a
/X
(Expr)
/1N
Expr + Term
| |
Term Factor

Factor

Expr
|

Term

N
Term * Factor
I l

Factor a

(
Top-Down Parsing: Algorithm 7 Input Grammar G

- Expr + Term

ALGORITHM: TDParse | Term

INPUT: CFG G=(V, X, R, S) 4 — Term * Factor

OUTPUT: Root of a Parse Tree or Syntax Error

NOCED | Factor

root :=|a new node for the start symbol S II — (Expr)

focus :="Troor

initialize an empty stack trace | a

trace. push (null)

word := NextWord() Ez
while (true): kox
if focuse V then

if Junvisited rule focus - B1B2...Bn € R then
create (31,85 ...0n as children of focus
trace.push (ﬁnﬁn—1 s 301

focus := 4 -ﬁw:/’
A

else
if focus = S then report syntax error
else backtrack
‘/elseif word matches focus then

word := NextWord() wp,‘
| [

v focus :=_trace.pop ()
elseif (Worg/ EOF A focus = null th€p return root
else|backtrack |
Term Factor

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren Facltor I

a

Factor

/TN

(Expr)

/1IN

Expr + Term

Egr > ®

Top-Down Parsing: Discovering Leftmost Derivations (1)f f= 23

ALGORITHM: TDParse Parse: (a) + a i a
INPUT: CFG G=(V, ¥, R, S) ———
OUTPUT: Root of a Parse Tree or Syntax Error

PROCENURE :
root /:= a new node for the start_svmbol S
focus := root Term « Factor
initialize an empty stack lrace
trace. push (null) Factor
word := NextWord() (EXpr)

while (true):
if focus € hen ‘ /Mf’ Ym%

if @ rule focus —~ BBy ...Bp € R then
—
~>create By, B, ...0n as children of focus

trace.push (BnBp_q - - - B2
focus %’1 ! /{ (p\‘f‘“g

else .
if focus = S then report syntax error

else backtrack
elseif word matches focus then TQ’M
word := NextWord()
focus := trace.pop ()
elseif word = EOF A focus = null then return roo ‘f
else backtrack

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

(w-famm@@ .

Left-Recursions (LRs): Direct vs. Indirect

Direct Left-Recursions:

- Expr + Term
| Term

- Term = Factor
|

|

Factor
(Expr)

a

Factor

Indirect Left-Recursions:

A - Br

B - Cd
C - At

Expr + Term
Expr - Term

Term
Term x Factor
Term / Factor
Factor

CFGs: Left-Recursive vs. Right-Recursive Example: a + a * a
CFG with Left Recursions CFG with Right Recursions

Expr + Term Expr - Term Expr
Term Expr' — + Term Expr’

Term « Factor G
Factor Term — Factor Term’

Term’ — « Factor Term’
G

Factor — (Expr)
|

(Expr)

T &Y
Term Term * Factor ’ / \ \
| I 4
Factor Factor l A e‘ rﬁ‘tbl T;CM\%
| | o *

ALGORITHM: TDParse M: a
INPUT: CFG G=(V, X, R, S)

Expr Term Expr'
OUTPUT: Root of a Parse Tree or Syntax Error

Expr' - + Term Expr
PROCEDURE : | €
root/:= a new node for the start symbol S Te.rm = Faétor Te.rm’ -T /
rgcus = 'root Term’ - » Factor Term’ l/ M
initialize an empty stack lrace | e U
trace.push (null) Factor — (Expr)o/)
word- := NextWord () | s

while (true):
if focuse V then x
°if 3 unvisited rule focus — B1Bs...Bn € R then

3> 2 99 <? creaté ‘31,8, ...8n as children of focus

;‘_2 ; "_-i:;cuﬁ-?é: B1ﬂnﬂn_1 e P/m\m%je‘%/ < ﬁtﬁ
$ o T
%o

if focus = S then report syntax error

else backtrack ,ﬁw ;. E "\,éﬁ ~
elseif word matches focus then \, 7

= word, := NextWord() ' R (E J
= focus := trace.pop () .)’
elseif word = EOF A focus = null then return root L% E /ﬁ,
else backtrack

X of ",.r g E

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

g gt O
K ‘«['” AMQ ke Mcaf,, Eﬂ

Top-Down Parsing: Discovering Leftmost Derivations (3)

ALGORITHM: TDParse parse: (a + a) %* a

INPUT: CFG G=(V, X, R, S)
OUTPUT: Root of a Parse Tree or Syntax Error
PROCEDURE :
root := a new node for the start symbol S
focus := root
initialize an empty stack lrace
trace. push (null)
word := NextWord()
while (true):
if focus € V then
if 3Junvisited rule focus - B1B>...Bn € R then
create B1,B>...0n as children of focus
trace.push (BnBp_q - - - B2)
focus := 4
else
if focus = S then report syntax error
else backtrack
elseif word matches focus then
word := NextWord()
focus := trace.pop ()
elseif word = EOF A focus = null then return root
else backtrack

Term Expr’
+ Term Expr’

€
Factor Term'
~ Factor Term’

€

(Expr)

backtrack = pop focus.siblings; focus := focus.parent; focus.resetChildren

